What Is A Secondary Septic Tank Called? (Solution found)

  • The secondary compartment of the tank is connected by a pipe to the next component of the septic system: THE DRAINFIELD. What is a drainfield? A drainfield is just as it sounds: A field to drain water. A drain field is an area of soil in your lawn dedicated to the discharge of all the excess water that is used in your home.

What is a secondary septic system?

‘Secondary Treatment’ septic systems like Aerated Wastewater Treatment Systems (AWTS) and sand filter septic systems treat the wastewater from your home to a much higher quality, before the water can be dispersed to your land and used to water your gardens and lawns.

What are the 3 types of septic systems?

Types of Septic Systems

  • Septic Tank.
  • Conventional System.
  • Chamber System.
  • Drip Distribution System.
  • Aerobic Treatment Unit.
  • Mound Systems.
  • Recirculating Sand Filter System.
  • Evapotranspiration System.

What is a 2 compartment septic tank?

TWO-COMPARTMENT TANKS The vertical wall positioned about two-thirds from the tank inlet helps trap solids more effectively and offers better protection of the drainfield. The larger size – generally 1500 gallons vs. 1000 gallons for a single compartment tank – means less frequent pump-outs.

What are the different types of septic tanks?

Septic Tank Types

  • Concrete. Concrete septic tanks. These durable tanks will usually last for several decades.
  • Steel. Steel septic tanks.
  • Fiberglass. Fiberglass septic tanks.
  • Plastic. Plastic septic tanks.
  • Aerobic. Aerobic septic tanks.

What is an aeration septic system?

What exactly is a septic tank aerator? An aerator, or air pump, pushes air and oxygen into your septic system. The additional oxygen increases natural bacterial activity within the system, that then provides additional treatment for nutrients in the effluent.

What is an engineered septic system?

What is an engineered septic system? An engineered septic system is often used in cases where a conventional septic system cannot be installed. The basic three limiting factors on the placement of the septic system are the ground water table, bedrock, and local health ordinances.

What are the 2 types of septic systems?

There are two basic septic system types — conventional and alternative. Site and soil conditions generally determine the type of system that should be installed.

What’s the difference between a septic tank and a septic field?

The septic tank is a buried, water-tight container usually made of concrete, fiberglass, or polyethylene. The liquid wastewater (effluent) then exits the tank into the drainfield. The drainfield is a shallow, covered, excavation made in unsaturated soil.

Can you have a septic tank without a leach field?

The waste from most septic tanks flows to a soakaway system or a drainage field. If your septic tank doesn’t have a drainage field or soakaway system, the waste water will instead flow through a sealed pipe and empty straight into a ditch or a local water course.

Why do septic tanks have 2 compartments?

Septic tanks may have one or two compartments. Two-compartment tanks do a better job of set- tling solids and are required for new systems. Tees or baffles are provided at the tank’s inlet and outlet pipes. The inlet tee slows the incom- ing wastes and reduces disturbance of the settled sludge.

Why does my septic system have two tanks?

Unlike a regular septic system, the two tanks on the dual septic system are used to separately store blackwater and greywater. Blackwater entails things such as urine, fecal matter, and flush water. Alternatively, greywater is the much less pathogenic liquid coming from showers, sinks, and washing machines.

How many lids does a 1000-gallon septic tank have?

Single Compartment 500 – 1,000 Gallon Septic Tanks: Installed up to approximately 1976, this tank style will have one main lid and two smaller baffle lids on both ends of the tank as shown in the diagram below.

Which type of septic tank is best?

The best choice is a precast concrete septic tank. Precast septic tanks hold many advantages over plastic, steel, or fiberglass tanks. This is why so many cities and towns actually require the use of concrete septic tanks.

What are the different types of aerobic septic systems?

Types of aerobic treatment systems

  • Fixed film systems.
  • Continuous flow, suspended growth aerobic systems.
  • Retrofit or portable aerobic systems.
  • Composting toilets.
  • Effluent quality.

Does shower water go into septic tank?

From your house to the tank: Most, but not all, septic systems operate via gravity to the septic tank. Each time a toilet is flushed, water is turned on or you take a shower, the water and waste flows via gravity through the plumbing system in your house and ends up in the septic tank.

Types of Septic Systems

Septic system design and size can differ significantly from one neighborhood to the next, as well as throughout the country, due to a variety of variables. Household size, soil type, slope of the site, lot size, closeness to sensitive water bodies, weather conditions, and even municipal ordinances are all considerations to take into consideration. The following are 10 of the most often encountered septic system configurations. It should be noted that this is not an exhaustive list; there are several additional types of septic systems.

  • Septic Tank
  • Septic System System that is often used
  • System of Chambers
  • Drip Distribution System (also known as a drip distribution system)
  • Unit for Aerobic Treatment
  • System of mounds
  • System with recirculating sand filtering
  • A system for evapotranspiration
  • Wetland System that has been constructed
  • System of Clusters and Communities

Septic Tank

This tank is underground and waterproof, and it was designed and built specifically for receiving and partially treating raw home sanitary wastewater. Generally speaking, heavy materials settle at or near the bottom of the tank, whereas greases and lighter solids float to the surface. The sediments are retained in the tank, while the wastewater is sent to the drainfield for further treatment and dispersion once it has been treated.

Conventional System

Septic tanks and trench or bed subsurface wastewater infiltration systems are two types of decentralized wastewater treatment systems (drainfield). When it comes to single-family homes and small businesses, a traditional septic system is the most common type of system. For decades, people have used a gravel/stone drainfield as a method of water drainage. The term is derived from the process of constructing the drainfield. A short underground trench made of stone or gravel collects wastewater from the septic tank in this configuration, which is commonly used.

Effluent filters through the stone and is further cleaned by microorganisms once it reaches the soil below the gravel/stone trench, which is located below the trench.

Chamber System

Gravelless drainfields have been regularly utilized in various states for more than 30 years and have evolved into a standard technology that has mostly replaced gravel systems. Various configurations are possible, including open-bottom chambers, pipe that has been clothed, and synthetic materials such as expanded polystyrene media. Gravelless systems can be constructed entirely of recycled materials, resulting in considerable reductions in carbon dioxide emissions during their lifetime. The chamber system is a type of gravelless system that can be used as an example.

The key advantage of the chamber system is the enhanced simplicity with which it can be delivered and built.

This sort of system is made up of a number of chambers that are connected to one another.

Wastewater is transported from the septic tank to the chambers through pipes. The wastewater comes into touch with the earth when it is contained within the chambers. The wastewater is treated by microbes that live on or near the soil.

Drip Distribution System

An effluent dispersal system such as the drip distribution system may be employed in a variety of drainfield configurations and is very versatile. In comparison to other distribution systems, the drip distribution system does not require a vast mound of dirt because the drip laterals are only placed into the top 6 to 12 inches of soil. In addition to requiring a big dosage tank after the sewage treatment plant to handle scheduled dose delivery of wastewater to drip absorption areas, the drip distribution system has one major disadvantage: it is more expensive.

Aerobic Treatment Unit

Aerobic Treatment Units (ATUs) are small-scale wastewater treatment facilities that employ many of the same procedures as a municipal sewage plant. An aerobic system adds oxygen to the treatment tank using a pump. When there is an increase in oxygen in the system, there is an increase in natural bacterial activity, which then offers extra treatment for nutrients in the effluent. It is possible that certain aerobic systems may additionally include a pretreatment tank as well as a final treatment tank that will include disinfection in order to further lower pathogen levels.

ATUs should be maintained on a regular basis during their service life.

Mound Systems

Using mound systems in regions with short soil depth, high groundwater levels, or shallow bedrock might be a good alternative. A drainfield trench has been dug through the sand mound that was erected. The effluent from the septic tank runs into a pump chamber, where it is pumped to the mound in the amounts recommended. During its release to the trench, the effluent filters through the sand and is dispersed into the native soil, where it continues to be treated. However, while mound systems can be an effective solution for some soil conditions, they demand a significant amount of land and require regular care.

Recirculating Sand Filter System

Sand filter systems can be built either above or below ground, depending on the use. The effluent is discharged from the septic tank into a pump compartment. Afterwards, it is pushed into the sand filter. The sand filter is often made of PVC or a concrete box that is filled with a sand-like substance. The effluent is pushed through the pipes at the top of the filter under low pressure to the drain. As the effluent exits the pipelines, it is treated as it passes through the sand filtering system.

However, sand filters are more costly than a standard septic system because they provide a higher level of nutrient treatment and are thus better suited for areas with high water tables or that are adjacent to bodies of water.

Evapotranspiration System

Sand filtration systems can be built either above or below ground, depending on the circumstances. Drainage from the septic tank is directed to a pump chamber. A sand filter is then used to filter the water. The sand filter is often made of PVC or a concrete box that is filled with a sand-like substance. Under low pressure, effluent is pushed via pipes that run up to the top of the filter. While passing through the sand filter, the effluent is treated as it exits the pipes and enters the environment.

However, sand filters are more costly than a standard septic system since they provide a higher level of nutrient treatment and are thus suitable for areas with high water tables or that are adjacent to water bodies.

Constructed Wetland System

Construction of a manufactured wetland is intended to simulate the treatment processes that occur in natural wetland areas. Wastewater goes from the septic tank and into the wetland cell, where it is treated. Afterwards, the wastewater goes into the media, where it is cleaned by microorganisms, plants, and other media that eliminate pathogens and nutrients. Typically, a wetland cell is constructed with an impermeable liner, gravel and sand fill, and the necessary wetland plants, all of which must be capable of withstanding the constant saturation of the surrounding environment.

As wastewater travels through the wetland, it may escape the wetland and flow onto a drainfield, where it will undergo more wastewater treatment before being absorbed into the soil by bacteria.

Cluster / Community System

In certain cases, a decentralized wastewater treatment system is owned by a group of people and is responsible for collecting wastewater from two or more residences or buildings and transporting it to a treatment and dispersal system placed on a suitable location near the dwellings or buildings. Cluster systems are widespread in settings like rural subdivisions, where they may be found in large numbers.

How Your Septic System Works

Underground wastewater treatment facilities, known as septic systems, are often employed in rural regions where there are no centralized sewage lines. They treat wastewater from household plumbing, such as that produced by bathrooms, kitchen drains, and laundry, by combining natural processes with well-established technology. A conventional septic system is comprised of two components: a septic tank and a drainfield, often known as a soil absorption field. It is the septic tank’s job to decompose organic matter and to remove floatable stuff (such as oils and grease) and solids from wastewater.

Alternate treatment systems rely on pumps or gravity to assist septic tank effluent in trickling through a variety of media such as sand, organic matter (e.g., peat and sawdust), constructed wetlands, or other media to remove or neutralize pollutants such as pathogens that cause disease, nitrogen, phosphorus, and other contaminants.

Prior to discharging wastewater into the environment, several alternative systems are designed to evaporate or disinfect the effluent.

Specifically, this is how a typical conventional septic system works:

  1. All of the water that leaves your home drains down a single main drainage pipe and into a septic tank. An underground, water-tight container, often composed of concrete, fiberglass, or polyethylene, serves as a septic system’s holding tank. Its function is to retain wastewater for a long enough period of time to allow particles to sink to the bottom and form sludge, while oil and grease float to the surface and produce scum. Sludge and scum are prevented from exiting the tank and moving into the drainfield region by compartments and a T-shaped outlet. After that, the liquid wastewater (effluent) exits the tank and flows into the drainfield. The drainfield is a shallow, covered hole dug in unsaturated soil that serves as a drainage system. Porous surfaces are used to release pretreated wastewater because they allow the wastewater to pass through the soil and into the groundwater. In the process of percolating through the soil, wastewater is accepted, treated, and dispersed by the soil, finally discharging into groundwater. Finally, if the drainfield becomes overburdened with too much liquid, it can flood, causing sewage to flow to the ground surface or resulting in toilet backups and sink backups. Finally, wastewater percolates into the soil, where it is naturally removed of harmful coliform bacteria, viruses, and nutrients. Coliform bacteria are a kind of bacteria that may be found in the intestines of humans and other warm-blooded animals, with humans being the most common host. As a result of human fecal contamination, it is a sign of this.
See also:  Who Does Septic Tank Inspection In Tuscaloosa? (Best solution)

The Guadalupe-Blanco River Authority has built an animated, interactive model of how a residential septic system works, which you can view here.

Do you have a septic system?

It’s possible that you’re already aware that you have a septic system. If you are not sure, here are some tell-tale symptoms that you most likely are:

  • You make use of well water. In your home, the water pipe that brings water into the house does not have a meter. In the case of a water bill or a property tax bill, you will see “$0.00 Sewer Amount Charged.” It is possible that your neighbors have a septic system

How to find your septic system

You can locate your septic system once you have confirmed that you have one by following these steps:

  • Taking a look at the “as constructed” drawing of your house
  • Making a visual inspection of your yard for lids and manhole covers
  • Getting in touch with a septic system service provider for assistance in locating it

Failure symptoms: Mind the signs!

A bad odor is not necessarily the first indicator of a septic system that is failing to work properly. Any of the following signs should prompt you to seek expert assistance:

  • Water backing up into the drains of homes and businesses
  • It is especially noticeable in dry weather that the drainfield grass is bright green and spongy. The presence of standing water or muddy soil near your septic system or in your basement
  • A strong stench emanating from the area surrounding the septic tank and drainfield

What Are The Different Types of Septic Systems, Type 1, Type 2 and Type 3 System

The following things must be considered while selecting the appropriate septic system type: First and foremost, it is critical to choose the most appropriate septic system for your soil conditions; second, the system must be large enough to accommodate your household needs; and third, the wastewater must be sufficiently treated to ensure that the effluent discharged complies with local environmental health standards.

With so many various types of septic systems available, selecting the right one for your house may be a difficult endeavor.

Different Types of Septic Systems

It is possible to have three different kinds of septic systems, which are differentiated by the way they handle the wastewater that enters the system. The three types are as follows:

  • A septic system may be classified into three categories based on how it treats wastewater that enters the system. These categories are as follows:

Installation of a septic tank in British Columbia ” data-image-caption=”” data-image-caption=”” In both cases, the data-medium-file attribute is set to 1 and the data-large-file attribute is set to 1. loading=”lazy” src=”is-pending-load=1 038;ssl=1″ loading=”lazy” src=”is-pending-load=1 038;ssl=1″ alt=”installation of a septic tank” Height is 225 inches and the breadth is 300 inches. data-recalc-dims=”1″ data-lazy-srcset=” ssl=1 300w, ssl=1 541w” data-lazy-sizes=”(max-width: 300px) 100vw, 300px” data-lazy-sizes=”(max-width: 300px) 100vw, 300px” data-lazy-src=” is-pending-load=1 038;ssl=1″ srcset=”″ data-lazy-src=” is-pending-load=1 038;ssl=1″ data-lazy-src=” is-pending- It is critical to select the most appropriate septic system for your property, since selecting the incorrect system might prove to be an expensive error.

Let’s take a deeper look at the distinctions between each type of septic system in order to assist you determine which is the best solution for your particular circumstance.

Type 1 Septic System (Septic Tank System)

Septic systems classified as Type 1 are those installed on-site and in which the principal method of treating waste water is a septic tank or septic tank with leach field. A drainage field, which can be comprised of seepage beds, subsurface trenches, or aboveground sand mounds, can be used to dispose of the treated effluent once it has been treated. Effluent can either flow to the drain field by gravity or be pumped to the drain field under pressure, depending on the circumstances. Gravity system in the conventional sense ” data-image-caption=”Gravity septic system in the conventional manner” In both cases, the data-medium-file attribute is set to 1 and the data-large-file attribute is set to 1.

  • They are made up of a septic tank that is built underground and that collects the wastewater.
  • Because the tank is devoid of oxygen, it creates an environment conducive to the growth of anaerobic bacteria in it.
  • Tank effluent drains out of the tank through a drain field and onto the surrounding soil.
  • Normally occurring microorganisms that reside in the soil continue to break down the effluent, eradicating any hazardous bacteria and pathogens from the effluent before it reaches the groundwater.

Regular pumping of the tank is required to remove the solids (scum and sludge) that have built up in it over time.

Type 2 Septic System (Septic Tank + Secondary Treatment)

Septic systems are classified into two types: type 1, type 2, and type 3. Type 2 septic systems have an extra secondary wastewater treatment step, which is the most significant distinction between the two. As with a Type 1 system, the anaerobic bacteria in the septic tank break down the particles, which is done in the absence of oxygen. Typically, stage oxygen is supplied to the wastewater during the secondary treatment process, allowing aerobic microorganisms to grow in the system. Bacteria that are aerobic in nature break down any suspended particulates that may be present in the wastewater during treatment.

Extending Drain Field Life with Aerobic Septic Systems

Experimental evidence suggests that adding an aerobic septic system to an existing conventional gravity system may help to renew or prolong the life expectancy of the system in question. Aeration or oxygen introduced into an existing septic system may increase aerobic bacterial activity in the biomass, which may help to enhance the septic field’s performance if it is in a malfunctioning state. Although it is not quite that straightforward. Because the agitation caused by the aerating can drive suspended materials out into the septic field, a settling compartment or an extra tank may be necessary in conjunction with an effluent filter.

  • In comparison to Type 1 septic systems, Type 2 septic systems are more efficient in treating wastewater.
  • The depth between the surface and the confining layer or water table, as well as the quality of the soils on a land, are all essential considerations for treating wastewater.
  • These characteristics make them particularly suitable for usage on homes with limited area.
  • The only disadvantage is that the treatment expenses associated with a Kind 2 septic system will be greater than those associated with a Type 1 septic system, which is the most common type of septic system.
As per our Standards Practice, here is a subsection of our code: III- 5.3.2.2.(d) Type 2 effluent hydraulic loading rate and vertical separation

(I) Vertical separation for hydraulic loading rates of Type 2. Although the employment of a Type 2 treatment method is a realistic choice for many projects and locations (especially if available space is restricted), this will not always be the only viable alternative available. In some circumstances, according to the Volume II regulations, a greater vertical separation is required for Type 2 effluent hydraulic loading rates (HLR), notably for gravity distribution and demand dosing. Because Type 2 wastewater may have pathogen levels that are almost as high as those seen in Type 1 effluent, a deeper soil depth is required in order to offer sufficient soil-based treatment (especially pathogen elimination) in these situations.

  1. If multiple doses are applied in a short period of time, the risk of soil saturation is higher, and the total number of pathogens applied will be proportionally higher at the higher HLR.
  2. Because Type 2 treatment systems are frequently utilized as a solution for small sites, the requirements in this handbook allow for a high HLR with Type 2 effluent, which is consistent with industry practice.
  3. As a result, larger HLR for Type 2 is given precedence over smaller VS in the standards.
  4. This is due to the fact that at a lower HLR, the shallower VS will be sufficient for treating patients.
  5. The type 2 wastewater has a consistent distribution and is ii) When timed or micro-dosing options are utilized in conjunction with Type 2 HLR, the Volume II standards allow for a narrower vertical separation.
  6. They also reduce the likelihood of soil saturation by distributing dosages more evenly.
  7. For further information on the hydraulic application rate, see Section III-5.2.2.1.(a) (HAR).
  8. As a result, on some soils, the standards provide a somewhat greater VS for Type 2 HLR with timed dosing than what is specified on others.

High HLR are permitted in sandmound and sandlined trench or bed systems when Type 2 effluent is utilized, and as a result, micro-dosing is necessary in these applications when high HLR are permitted.

How do Aerobic Septic Treatment Units Work?

In essence, an aerobictreatment unit is a type of “oxidizer,” which utilises excess oxygen present in waste water in order to sustain aerobic microorganisms, which in turn breakdown dissolved organic and nitrogen molecules to simple CO2 or inorganic compounds. As bacteria die off, they collect as a sludge of biological material, some of which is used to enable the production of new cells or microbes, which is essential for the system to continue to function. In the “trashtank,” ATUs separate solid waste from liquid waste.

(See the drawing at the top of this page for an illustration.) “Carbohydrates, lipids, proteins, urea, soaps, and detergents are examples of organic compounds that can be found in residential household wastewater.

Domestic wastewater contains biologically bound nitrogen, sulfur, and phosphorus as well as other elements.

Wastewater fermentation produces two byproducts: methane and carbon dioxide.” — According to InspectApedia (Guide to Aerobic Septic Systems)

Type 3 Septic System (Septic Tank + Secondary Treatment + Disinfection/Filtration)

In contrast to Type 1 and 2 systems, Type 3 septic systems are custom-designed, high-capacity sewage treatment facilities that are capable of treating wastewater to a very high level, generating clear, odorless effluent with far greater water quality than Type 1 and 2 systems. It is necessary that a Type 3 septic system contain a technique of disinfection that is capable of eliminating harmful organisms from the effluent before it is released to the drain field. A Type 3 septic system is composed of the following components, which are frequently found together: Anaerobic bacteria break down waste in an oxygen-free environment in the septic tank; aerobic bacteria break down waste in an oxygen-containing environment in the second stage of a Type 2 septic system; and disinfection takes place in the third stage of a Type 1 or Type 2 septic system after the second stage.

The disinfection process might involve chemical treatment with chlorine, as well as disinfection with ozone or UV radiation.

Finally, the treated effluent is released to a drain field, where it is often subjected to pressure (i.e.

The use of Type 3 septic systems is an excellent option for properties with poor soil conditions and situations that are not appropriate for the installation of a Type 1 or Type 2 sewage system. Sites having the following characteristics are included in this category:

  • The soil depth is less than 0.5 feet (15 cm)
  • The percolation rates of the soil are either extremely slow or extremely quick
  • A lack of soil structure
  • There is insufficient room to establish a more typical septic system

A Type 3 system may be preferable in situations where the conditions are suitable for a Type 1 or Type 2 system, but space is extremely limited. This is because the high quality of the effluent discharged necessitates the use of a smaller drain field, which results in a smaller drain field being required. However, the efficiency of treatment and the water quality of the effluent discharged at the end of the treatment process is higher in a Type 2 system than in a Type 1 system, and even higher still in a Type 3 system.

See also:  How Long Before Pumping Out My 10000 Gal. Septic Tank? (Correct answer)

The Sewerage System Regulation Process:

Since the circumstances are right for a Type 1 or Type 2 system, but space is at a premium, a Type 3 system may be a preferable alternative because of the excellent quality of the effluent emitted. One could wonder, ‘why do we need various types of septic systems when they all accomplish the same job?’ ‘While this is true to a certain extent, the efficiency of treatment and the water quality of the effluent discharged at the end of the treatment process is higher in a Type 2 system than in a Type 1 system, and higher still in a Type 3 system.So, ultimately, the choice of septic system will depend on the soil conditions at the site, the amount of space available for a drain field, and/or the need for a higher quality effluent that is cleaner and safer,

Standards for Seasonal use as per Standards Practice Manual: III- 2.2.1 SEASONAL USESeasonal use systems should be installed in compliance with the Sewerage System Standard Practice Manual.

The usage of type 2 or type 3 systems in seasonal residences, such as a holiday cottage, may not be appropriate since these treatment systems are often powered by electricity and may rely on biological processes that are not capable of being sustained under seasonal conditions. In the specification of a treatment system for a seasonal home, include steps to ensure the system’s operation during periods of intermittent power supply and low water use. From the state of Washington, here is an educational film on the many types of septic systems available.

After everything is said and done, some of these systems are unquestionably more complex than others; therefore, a more comprehensive examination should be performed in order to be confident of the sort of septic system you may require for your property.

We’d be delighted to assist you: Contact information: [email protected], 250-768-0056

A Beginner’s Guide to Septic Systems

  • Septic systems are used to dispose of waste from homes and buildings. Identifying the location of the septic tank and drainfield
  • What a Septic System Is and How It Works Keeping a Septic System in Good Condition
  • Signs that a septic system is failing include:

Septic systems, also known as on-site wastewater management systems, are installed in a large number of buildings and houses. It is easy to lose sight of septic systems, which operate quietly, gracefully, and efficiently to protect human and environmental health due to their burying location.

Septic systems are the norm in rural regions, but they may also be found in a lot of metropolitan places, especially in older buildings. It is critical to understand whether or not your building is on a septic system.

Is Your Home or Building on a Septic System?

It is possible that the solution to this question will not be evident. If a structure looks to be connected to a sewage system, it may instead be connected to a septic system. It is fairly unusual for tenants to be unaware of the final destination of the wastewater generated by their residence. Some of the hints or signs listed below will assist in determining whether the facility is served by a septic system or whether it is supplied by a sewer system:

  • Sewer service will be provided at a cost by the city or municipality. Pay close attention to the water bill to see whether there is a cost labeled “sewer” or “sewer charge” on it. If there is a fee for this service, it is most likely because the facility is connected to a sewage system. Look up and down the street for sewage access ports or manholes, which can be found in any location. If a sewage system runs in front of a property, it is probable that the house is connected to it in some way. Inquire with your neighbors to see if they are connected to a sewer or septic system. The likelihood that your home is on a sewer system is increased if the properties on each side of you are on one as well. Keep in mind, however, that even if a sewage line runs in front of the structure and the nearby residences are connected to a sewer system, your home or building may not be connected to one. If the structure is older than the sewer system, it is possible that it is still on the original septic system. Consult with your local health agency for further information. This agency conducts final inspections of septic systems to ensure that they comply with applicable laws and regulations. There is a possibility that they have an archived record and/or a map of the system and will supply this information upon request

All property owners should be aware of whether or not their property is equipped with an on-site wastewater treatment system. Georgia law mandates that the property owner is responsible for the correct operation of a septic system, as well as any necessary maintenance and repairs.

Locating the Septic Tank and Drainfield

Finding a septic system may be a difficult process. They can be buried anywhere in the yard, including the front, back, and side yards. After a few years, the soil may begin to resemble the surrounding soil, making it impossible to distinguish the system from the surrounding soil. It is possible that in dry weather, the grass will be dryer in the shallow soil over the tank and greener over the drainfield, where the cleansed water will be released, but this is not always the case, especially in hot weather.

  • The contractor who built the house should have presented the initial owner with a map showing the tank and drainfield locations, according to the building code.
  • The installation of the system, as well as any modifications made to it, would have been examined by your local health authority.
  • Unfortunately, if the system is very old, any records related with it may be insufficient or nonexistent, depending on the situation.
  • Look for the point at where the wastewater pipes join together if the building is on a crawlspace or has an unfinished basement.
  • The sewer line that runs through the structure is referred to as the building sewer.
  • To “feel” for the tank, use a piece of re-bar or a similar metal probe.
  • If you use this free service, you may avoid accidentally putting a rod through your gas or water line.

Try to locate the tank after a rainstorm, when the metal probe will be more easily maneuvered through moist dirt.

This should be done with care; extreme caution should be exercised to avoid puncturing the building sewer.

A tank is normally 5 by 8 feet in size, however the dimensions might vary.

Be aware that there may be rocks, pipes, and other debris in the area that “feels” like the tank but is not in fact part of the tank.

However, it is possible to have the lid or access port positioned on a riser in addition to being on the same level as the top of the tank in some cases.

Once the tank has been identified, make a rough drawing of its placement in relation to the house so that it will not be misplaced again!

It may be easier to discover the drainage lines now that the tank has been identified, particularly if the area has been subjected to prolonged periods of drought.

How a Septic System Works

Typical sewage treatment system (figure 1). It is composed of three components (Figure 1): the tank, the drain lines or discharge lines, and the soil treatment area (also known as the soil treatment area) (sometimes called a drainfield or leach field). The size of the tank varies according to the size of the structure. The normal home (three bedrooms, two bathrooms) will often include a 1,000-gallon water storage tank on the premises. Older tanks may only have one chamber, however newer tanks must have two chambers.

  1. The tank functions by settling waste and allowing it to be digested by microbes.
  2. These layers include the bottom sludge layer, the top scum layer, and a “clear” zone in the center.
  3. A typical septic tank is seen in Figure 2.
  4. It is fortunate that many of the bacteria involved are found in high concentrations in the human gastrointestinal tract.
  5. Although the bacteria may break down some of the stuff in the sludge, they are unable to break down all of it, which is why septic tanks must be cleaned out every three to seven years.
  6. In addition, when new water is introduced into the septic tank, an equal volume of water is pushed out the discharge lines and onto the drainfield.
  7. The water trickles out of the perforated drain pipes, down through a layer of gravel, and into the soil below the surface (Figure 3).
  8. A typical drainfield may be found here.
  9. Plants, bacteria, fungus, protozoa, and other microorganisms, as well as bigger critters such as mites, earthworms, and insects, flourish in soil.
  10. Mineralogical and metallic elements attach to soil particles, allowing them to be removed from the waste water.

Maintaining a Septic System

The most typical reason for a septic system to fail is a lack of proper maintenance. Septic systems that are failing are expensive to repair or replace, and the expense of repairs rests on the shoulders of the property owner (Figure 4). Fortunately, keeping your septic system in good working order and avoiding costly repairs is rather simple. Figure 4. Septic system failure is frequently caused by a lack of proper maintenance. It is in your best interests to be aware of the location of the system, how it operates, and how to maintain it.

  • You should pump the tank if you aren’t sure when the last time it was pumped.
  • It is not permissible to drive or park over the tank or drainage field.
  • No rubbish should be disposed of in the sink or the toilet.
  • It’s important to remember that garbage disposals enhance the requirement for regular pumping.
  • When designing a landscape, keep the septic system in mind.
  • It is also not recommended to consume veggies that have been cultivated above drainfield lines (see Dorn, S.
  • Ornamental Plantings on Septic Drainfields.

C 1030).

Any water that enters your home through a drain or toilet eventually ends up in your septic system.

Don’t put too much strain on the system by consuming a large amount of water in a short period of time.

Additives should not be used.

Various types of additives are available for purchase as treatment options, cleansers, restorers, rejuvenator and boosters, among other things.

To break up oil and grease and unclog drains, chemical additives are available for purchase.

Pumping out the septic tank is not eliminated or reduced by using one of these systems.

They remain floating in the water and travel into the drainfield, where they may block the pipes. Acids have the potential to damage concrete storage tanks and distribution boxes.

Signs a Septic System is Failing

A failed system manifests itself in the following ways:

  • Sinks and toilets drain at a snail’s pace
  • Plumbing that is backed up
  • The sound of gurgling emanating from the plumbing system House or yard odors that smell like sewage
  • In the yard, there is wet or squishy dirt
  • Water that is gray in hue that has accumulated
  • An region of the yard where the grass is growing more quickly and is becoming greener
  • Water contaminated by bacteria from a well

If you notice any of these indicators, you should notify your local health department immediately. An environmentalist from the health department can assist in identifying possible hazards. There are also listings of state-certified contractors available from the local health department, who may do repairs. Repairs or alterations to the system must be approved by the health department and examined by an inspector. Keep an eye out for any meetings that may take place between a health department inspector and a contractor to discuss repairs to your system.

  • Household garbage that has not been properly handled is released into the environment when systems fail.
  • It has the potential to pollute surrounding wells, groundwater, streams, and other sources of potable water, among other things.
  • The foul odor emanating from a malfunctioning system can cause property values to plummet.
  • Briefly stated, broken systems can have an impact on your family, neighbors, community, and the environment.
  • Septic systems are an effective, attractive, and reasonably priced method of treating and disposing of wastewater.

Figures 2 and 3 reprinted with permission from: CIDWT. 2009. Installation of Wastewater Treatment Systems. Consortium of Institutes for Decentralized Wastewater Treatment. Iowa State University, Midwest Plan Service. Ames, IA.

History of the current status and revisions Published on the 15th of August, 2013. Published on March 28th, 2017 with a full review.

Septic System Types

A three-compartment tank is being erected for the purpose of distributing pressure. A pressure distribution lateral is being erected in three-foot-wide trenches employing graveless chambers to distribute pressure. Clark, Skamania, and Cowlitz Counties are home to a large number of them. This is a manifold that provides for flow control of each of the pressure distribution laterals in a pressure distribution system. An extensive pressured drainfield system, including many graveless chamber laterals, was recently completed and tested.

  1. Prior to backfilling, a “drip” drainfield was built.
  2. They are more expensive to build and require more maintenance than a system with a graveless chamber.
  3. The complexity of these systems is more than that of a normal “pressure” system, as seen above.
  4. Some are constructed in a factory, while others are constructed on site.
  5. When there are shallow soils present on the site, these methods are necessary (12-30 inches typically).

Typically, these treatment systems are followed by pressure distribution drainfields to complete the system (trenches or drip tube). The following are the most frequent types of pre-treatment systems that may be found in Clark County, California:

  • Textile Filters (AdvanTex)
  • Glendon Pods
  • Sand Filters (which are no longer commonly built, but there are numerous in the ground)
  • Sand Mounds
  • Aerobic Treatment
See also:  How Big Is The Septic Tank In My Yard? (TOP 5 Tips)

Advanced treatment systems for residential projects generally vary in price from $13,000 to $20,000, depending on their complexity. They can be higher if the structure is larger than usual or if the location has extremely challenging limitations. Only in extremely rare instances might a home system exceed $50,000 in cost. This is, however, a very unusual occurrence. An underground box filled with sand and drainrock collects pressured effluent from the septic tank and transports it to the sand filter.

  • During the filtering process, the unclean effluent passes through sand and settles in a sump at the bottom.
  • Many sand filters were erected in the past, however modern technology has mostly superseded sand filters in the present day and in the future.
  • The surface will only be able to see a couple of the lids once they have been completed.
  • Sand Mounds – A sand mound is another type of structure that is well suited for places with shallow soils.
  • A network of pressured pipes, similar to that of a pressure drainfield, is embedded inside the sand fill.
  • While moving downhill through the sand, the effluent is treated by the natural soil underneath it.
  • They are used less frequently these days, and when they are, the design often allows for a lesser height than in the past, which is a benefit.

Using a “aerobic” procedure, in which air is pumped into the effluent at certain intervals, another technique of treating wastewater can be used to reduce odors.

In order to introduce air into the effluent, a tiny air compressor is employed.

They are less expensive to install, take up less space on the property, and are less difficult to repair if and when they are damaged.

Textile Filter (AdvanTex) — Considered to be one of the highest-quality treatment systems now available, AdvanTex filters might be referred to as the “Cadillac” of septic system treatment systems in some circles.

The AdvanTex, on the other hand, makes use of a textile product rather than sand.

The NuWater system is less expensive to install than the AdvanTex system, and it does not require the use of a UV lamp, as does the AdvanTex system.

Specifically, a drip drainfield was employed in this particular instance.

The method is made up of many layers of sand and gravel that are deposited in a waterproof box that is dug into the ground, with a sand fill covering the whole surface area.

Typically, one “pod” is utilized for each bedroom in a house (or 120 gal/day of wastewater on a business project), with one “pod” being used for each bathroom.

The Glendon method, on the other hand, is still in use, and it offers advantages over a mound in some situations.

Two Glendon pods were erected at a distance from one another. It is possible to separate the “pods” in this method, which is advantageous in comparison to a regular mound, which is generally one long bump that cannot be divided.

The 6 Septic Systems You Must Know — Build With a Bang

Unacquainted with the many types of septic systems available? If this is the case, you are not alone. Unless your property is directly linked to the sewer system, you most certainly have a septic system in place. Sewage treatment on site is accomplished by the use of natural processes in a septic system, which is a linked system of components residing under ground. Typically, a septic system is located in the yard of a homeowner. The most typical location for septic systems is in rural locations, where there is no access to a centralized town or city waste treatment facility or sewage treatment system.

Why Concrete Septic Tanks May Be Your Best Option

First and foremost, the septic system collects and dumps the waste generated by the home in the septic tank. The septic tank then separates and pre-treats the solid waste and oils from the wastewater before releasing them into the environment. Following that, most systems direct liquid wastewater from the septic tank onto a distribution network of porous pipes that branch out from the residence and septic tank and gradually discharge the wastewater into the soil. Some septic systems, rather than just discharging wastewater into the soil, employ pumps, disinfection products, an evaporation mechanism, or simply rely on gravity to funnel wastewater through sand or other organic material before releasing the effluent into the soil.

  • The total square feet of drain field area required is determined by the number of bedrooms in the house and the soil type (arid or saturated), among other factors.
  • Septic tanks are intended to serve as the initial stop in the wastewater treatment process, and they are constructed to do so.
  • The sediments remain in the tank, while the wastewater is sent to the drain field for further treatment and dispersal when it has been treated.
  • Concrete, plastic (polyethylene), and fiberglass are the three most common materials used in construction.
  • Drain fields are plots of land that have been particularly engineered to assist in the filtering and removal of pollutants from wastewater.

Perforated pipes, which are buried within the trenches, are used to disseminate the wastewater from the home in a methodical manner. A standard septic system is comprised of a septic drain field, its associated pipe system, and a septic tank.

Conventional System

The majority of traditional septic systems are situated in single-family residences or small commercial establishments. A high number of individuals in a single area is not often served by traditional systems, which are not normally designed for this purpose. A typical system consists of the following components: Sewage treatment system (Septic tank) An underground wastewater infiltration system or a gravel-filled drain field can both be used to collect wastewater. Protects the clean drain field from additional possible impurities with a strong geofabric covering.

The wastewater (also known as effluent) is routed from the septic tank to the drain field in this location.

As soon as the wastewater passes through the clean drain field, it flows into the soil where it is continuously cleaned by naturally existing bacteria as it gently trickles its way through the soil layer and into groundwater.

The disadvantage is that it is difficult to install in homes with small lots.

Chamber System

As a viable alternative to the more frequent gravel field technique, chamber systems have been in use since the 1970s. It is common to employ chamber systems in places where the water table is high, as they reduce the likelihood of poor drainage and messy back-ups. Another need for this system is a sequence of linked pipelines and chambers, with the chambers being completely enclosed by soil. The septic pipes transport wastewater from the home to the septic tank, which subsequently transports the wastewater to the chambers.

During the last stages of wastewater treatment before it is discharged into a storm drain, bacteria in the soil release the treated wastewater into the soil as it flows downward toward the groundwater table.

The disadvantage of using an extra chamber instead of a more standard drain field is that there is an increased risk of additional maintenance.

Aerobic Treatment System

Aeration of wastewater in a septic treatment tank is accomplished by the use of aerobic treatment equipment. The infused oxygen in the wastewater aids in the addition of nutrients to the wastewater as well as the efficient start of the treatment process itself. Aerobic systems are available with tanks that may be used for both pretreatment and final treatment, as well as systems with two distinct tanks for pretreatment and final treatment, among other options. The ultimate objective is to treat and disinfect in a safe and efficient manner, without causing harm.

Advantage: This is particularly useful in locations with high water tables or in areas where there is insufficient land to construct a good drain field. The disadvantage of using an aerobic system is that, like the drip distribution system, it requires regular maintenance.

Drip Distribution System

It is not necessary to install a standard gravel-based drain field since the Drip Distribution system makes use of an underground snaking system of distribution pipes that are installed near the surface of the soil. Pipe laterals for the drip distribution system are buried in shallow ground soil, generally 6 to 12 inches below the surface of the ground. Because it eliminates the requirement for a standard drain field, this technique reduces the amount of digging required and makes it easier to reach plumbing within the drain field.

A second tank, referred to as a dosage tank, is required to take wastewater after it has passed through the septic tank in order to handle this technique.

However, in order for this to happen, the dosage tank must be connected to power.

Sand Filter System

The Drip Distribution system eliminates the need for a standard gravel-based drain field by employing a snaking network of distribution pipes buried near the surface of the soil. Using a drip distribution system, the pipes are buried in shallow ground soil, often 6 to 12 inches beneath the surface of the ground. This solution eliminates the requirement for a typical drain field, which reduces the amount of digging required and makes it easier to access plumbing within the drain field. In spite of the fact that it is more convenient, the drip distribution system is more sophisticated than a traditional system because of the essential measures that must be observed while spreading wastewater into the soil absorption region.

So that the absorption area does not become overflowed, the dosage tank discharges wastewater into the drip system in a controlled and gradual manner.

Benefit: A typical wastewater field system does not exist.

Evapotranspiration System

In contrast to conventional septic systems, the Evapotranspiration System’s drain field is housed in a closed, waterproof field that is covered with layers of gravel and sand to keep out the elements. Once the wastewater has passed through the septic tank and into the waterproof drain field, it begins to evaporate slowly. It is important to note that, unlike other septic systems, the effluent never filters into the soil. When compared to the alternatives, the ease of installation, maintenance, and use is superior.

Benefits: The ease of use is excellent, and the difficulty of installation and maintenance is minimal. Limitations of the evapotranspiration system: Excessive humidity or rains will prohibit the system from performing as intended.

Mound System

The mound system consists of the construction of a big sand mound that serves as a drain field. A controlled flow of wastewater is maintained throughout its journey from the septic tank to a chamber where it is pushed through to the mound. After flowing through a mound trench and percolating through the sand, the wastewater eventually trickles into the ground. Among those who live in rural locations where there is a lot of land but little absorbent soil, the mound system is a popular alternative.

Cons: It takes up a lot of room and requires a lot of upkeep.

Solid waste matter can block the pump and cause damage to the drain field if it is not pumped on a regular basis.

Garbage Disposal With Septic

Unless you reside in a septic-equipped home, it is better not to have a trash disposal. The increased volume of solid waste material will necessitate more frequent septic tank pumping and may erode the drain field, resulting in sewage back-ups in the future. Those who live in homes with septic systems may find that they must be extra cautious about what they flush down the toilet. Certain common home objects, when flushed down a toilet connected to a septic system, can create clogs, backups, and even damage to the system, resulting in not only discomfort and aggravation, but also a significant financial burden.

Chemicals may cause significant damage to and contamination of surface and groundwater, which can result in disease or even death in animals and people who consume the water.

Pesticides Oils Chemicals used in photography

Leave a Comment

Your email address will not be published. Required fields are marked *